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Abstract--This is a theoretical, numerical and experimental study that shows how to optimize the per- 
formance of on and off pulsating heaters in forced convection. Scale analysis shows that there exists an 
optimal heat pulse interval or frequency that maximizes the overall thermal conductance between the 
heater arid the free stream U~. Numerical results for a flat plate heater and experimental results for a 
cylinder in cross-flow validate the theory. Numerically it is shown that the optimal pulsating regime can 
be identitied accurately by using a complete simulation of the flow and temperature field around the heater. 
Boundary layer simplified numerical methods fail to simulate the short-times (high frequency) range of the 
process. The maximized overall conductance of a pulsating heater does not exceed the conductance 
associated with a steady (continuous) heater. The experimental and numerical results are non- 
dimensionalized and correlated by using the scales recommended by theory. When the 'on' and 'off' 
intervals are comparable, the optimal heat pulse interval is approximately 0.1 L/U~, where L is the scale 
of the swept length of the heater shape. This conclusion also applies to a pulsating heater embedded in a 

porous medium with uniform flow. 

1. INTRODUCTION 

A new trend in heat transfer research is represented 
by the interest ila pulsating heat transfer, in both for- 
ced and natural convection. The main theme of this 
activity is that the pulsation can be tuned to the natu- 
ral time scale of the flow, such that the thermal contact 
between wall and flow is maximized. The flow con- 
figurations and potential applications are extremely 
diverse, as pulsations can be built into the fluid flow, 
the wall heating pattern, or both. 

The current literature on time-dependent heat 
transfer with pulsating near-stagnation flows was 
reviewed by Mladin and Zumbrunnen [1]. The opti- 
mization of thermal contact in this configuration is 
important in the design of jet impingement techniques 
for cooling electronics [2]. Configurations in which 
the wall heating is pulsed were optimized, by Zum- 
brunnen [3] for stagnation flow, by Kazmierczak and 
Chinoda [4], Mantle et al. [5] and Lage and Bejan [6] 
for natural convection in an enclosed fluid, and by 
Antohe and Lage [7] for natural convection in an 
enclosed satura;ted porous medium. One conclusion 
of these studies is that each flow has a natural fre- 
quency that, if matched to the wall heating pulses, 
holds the key te maximizing the overall heat transfer 
between the wall and the fluid. 

In this paper we pursue the same fundamental ques- 
tion in the much simpler and more basic configuration 
of external forced convection. We seek to determine 
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the optimal heat pulse characteristics of heaters of 
several shapes immersed in free streams. The study 
begins with a theoretical argument that identifies the 
proper scales of the time-dependent phenomenon, and 
outlines the course of the optimization process. Next, 
we rely on complete numerical simulations to deter- 
mine accurately the optimal pulsating heating regime 
for a flat-plate heater parallel to an external stream. 
In the experiments that conclude the paper, we show 
that heaters of other shapes (e.g. cylinder in cross- 
flow) can be optimized in the laboratory, and that the 
optimal pulsating heating regime is predicted 
adequately by the nondimensional results developed 
theoretically and numerically. 

2. SCALE ANALYSIS 

The existence of an optimal frequency for pulsating 
heating in forced convection can be anticipated based 
on order of magnitude analysis. Consider for this pur- 
pose the configuration of Fig. 1, where the plane wall 
of length L is parallel to a uniform free stream 
(Uo~, To). The period of the pulsating heat transfer 
process is tl + t2. During the time interval of length h, 
the entire surface releases heat into the fluid, and its 
temperature rises above the free stream temperature. 

Let To be the order of magnitude of the surface 
temperature Tw(x, t) during the heating interval (note 
that in scale analysis T, does not have to be assumed 
uniform). Similarly, L is the scale of the swept length 
of the body, which in Fig. 1 is a fiat plate, and a 
cylinder of swept length scale D in the experimental 

2925 



2926 A.M. MOREGA et al. 

NOMENCLATURE 

B: bias limit of z 7 
f Blasius function, equation (23) 
f the group Nuo/Pe~/~, equation (25) T 
F double integral, equations (14), (15) T~x 
k thermal conductivity To 
L length scale, length of fiat plate 
Nu overall time-averaged Nusselt number T~ 

for flat plate, equation (14) u, v 
NUD overall time-averaged Nusselt number U~ 

for cylinder, equation (25) x, y 
p pressure 
P: precision limit of z 
Pe Peclet number of flat plate, U~L/c~ 
PeD Peclet number of cylinder, U~D/ct 
Pr Prandtl number, v/ct qB 
q" heat flux 0 
q" average heat flux, equation (5) 

v 
Q" heat interaction per unit area, equation ~, r/ 

(4) 
Re Reynolds number for flat plate, U~L/v 
ReD Reynolds number for cylinder, U~D/v 
t time 
t~ 'on'  interval 
t 2 'Off' interval 

dimensionless time : tU~/L for flat 
plate, and tU~/D for cylinder 
temperature 
hot-spot temperature 
surface temperature scale (Fig. 1), and 
surface temperature (Sections 3 and 4) 
free stream temperature 
velocity components 
free stream velocity 
coordinates, Fig. 1. 

Greek symbols 
thermal diffusivity 
similarity variable, equation (23) 
dimensionless temperature, equation 
(lO) 
kinematic viscosity 
dimensionless coordinates, equation 
(10). 

Subscripts 
( )opt optimal 
( ) .  dimensionless variables, equation (19). 

part of the paper (Section 5). During the next interval, 
tz, the heat transfer is interrupted, and the wall is 
modeled as an adiabatic surface. During this second 
interval, the wall temperature Tw(x, t) drops toward 
T~ because of the cooling effect provided by the free 
stream. 

Let us assume that at the t = 0 start of the heating 
pulse t~ the fluid layer that touches the wall is cold 

T w 

TO 

T .  

",. off 

I I 
0 t I t I + t 2 t 

0111 

' . , ( - -  Tw(x,t) 

y ~ Uoo, Too 

. ' / / / ~ / ' " ~ "  L u 

0 L x 

Fig. 1. Laminar boundary layer flow over a wall with pul- 
sating heat release. 

enough that its temperature is of the order of T~. The 
heat transfer from the T O wall to this fluid layer is 
mainly by unsteady conduction in the y direction, 
provided t does not exceed the time scale associated 
with one sweep of the wall, L/Uo~. In other words, the 
following scale analysis is restricted to time-dependent 
thermal diffusion in the near-wall region. This regime 
is present when 

L t ~  (1) 

i.e. when the thermal boundary layer has not had time 
to develop, and the instantaneous wall heat flux scale 
is 

k(To-- T•) 
q" (2) 

(at) ~/2 

If the heating interval t~ does not exceed the sweep 
time, 

L 
t, ~ ~ -  (3) 

the energy released per unit area during the t~ interval 
can be estimated by integrating equation (2), 

Q" = q" dt ~ k(To -- T~) 

The heat transferred from the wall during the sub- 
sequent t2 interval is zero. Of practical interest is the 
heat flux averaged over an entire cycle tl + t2, namely 
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Q" k(To - To~) t:/2 
q"  - . ( 5 )  

tl + t2 ~1/2 tl ÷ t2 

The design of the heat pulse has two degrees of 
freedom, t~ and t2. The effect of the t2 interval is such 
that q" increases monotonically as t2 decreases, i.e. as 
the heating process approaches the continuous mode. 
This trend, however, is valid only if t2 is greater than 
the sweep time, 

L 
t2 ~ tJ"o~--" (6) 

If t 2 is smaller than the sweep time, the assumption 
made above equation (1) is not valid because there 
will not be enough time for the wall region to be 
replenished by cold fluid. 

A more interesting aspect of equation (5) is that q" 
has a maximum with respect to t~. By solving 
O~l"/&tl = 0 we find that 

t],opt ~ t2. (7) 

This conclusion is not as general as it seems. In view 
of the opposing signs of the inequalities (3) and (6), 
the most we can say based "on equation (7) is that 
when t2 happens to be of the same order as the sweep 
time, the optimal heat pulse t, that maximizes q" is 
also of the same o:rder as the sweep time, i.e. 

L L 
t,,oo, ~ , ~ -  when t2 ~ , T .  (8) 

This demonstraSon of the existence of the t~ opti- 
mum led us to the more practical problem of deter- 
mining the exact ~:elation between q" and tl and t2. 
We investigated this problem numerically and exper- 
imentally, with the objective of identifying the pul- 
sating heating design that maximizes the time-aver- 
aged thermal contact between the wall and the stream. 

3. UNIFORM FLOW 

The numerical work presented several challenges, 
especially with respect to the use of boundary layer 
theory in the con:struction of the numerical model. 
For  this reason, we started with the simplifying 
assumption that the flow is uniform (u = U~, v = 0), 
and constructed t;he numerical model and the opti- 
mization in the simplest possible setting. That pre- 
liminary work is reported in this section. In the fol- 
lowing section (Section 4) we relaxed the uniform flow 
assumption and determined the effect of the Prandtl 
number on the optimization results. 

The case where the stream sweeps the wall with 
uniform velocity corresponds to a fluid in the limit 
Pr ~ 0 and to Darcy-Forchheimer flow in a porous 
medium saturated with fluid (e.g. ref. [8], pp. 52, 356). 
The energy equation for the time-dependent thermal 
boundary layer can be written nondimensionally as 

where 

t30 t30 &20 

H + &¢ - &~l 2 (9) 

x Y ~ I/2 U~L ~ = ~  q = ~ r e  P e -  

. tU~ T- -  T~ (10) 
t = ~ -  0 T 0 - T ~  

The initial and boundary conditions are 

0 = 0  at 7 = 0  

0 =  1 at r / = 0  and 0</ '~</ ' j  

00 
d ~ = 0  at ~ /=0  and /'l < ~ < / ' ~ + 7 2  (11) 

0--*0 as r / ~  

0 = 0  at ~ = 0  

where we have assumed that during the heating inter- 
val the wall temperature is uniform and constant, 
Tw = To. The wall thermal boundary conditions were 
repeated during each subsequent cycle of duration 
t~ + t2. The evolution of the temperature field was 
simulated numerically until the initial transient died 
down and 0(L ~, q) became periodic. 

The approach to the periodic state was determined 
based on the observed behavior of the heat flux aver- 
aged over the wall length L and a complete cycle 
t'j + t'2. First, the instantaneous L-averaged heat flux 
was calculated from 

q"(t) 1 f L k (  - ~yy~, = L j  ° \ dx 
,=0 

/ U  L \  1/2 r | ( ) k T - ~ -  O0 

The heat flux averaged over L and i'~ + t'z was cal- 
culated next by using the left sides of equations (4) 
and (5): 

1 P, 
q " =  t', +/'2 J0 q"(t)dt. (13) 

The q" result was nondimensionalized as the overall 
time-averaged Nusselt number for the complete cycle, 

Nu - k(To - T~) - F(tl ,  t2) (14) 

where F is the double integral 

fff,,T~)= 1 i ~, 00 0d~]dT. 
The F function accounts for the effect of the heat 

pulse characteristics on the overall heat transfer 
between the wall and the stream. Note that F is the 
same as Nu/Pe ~/2. We determined F numerically by 
first solving the transient thermal boundary layer 
problem (9) (11) in the domain 0 < ~ <  1 and 
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Fig. 2. The effect of the time intervals T~ and t'2 on the overall 
time-averaged Nusselt number when the flow is uniform 

(Pr ~ 0). 

0 < r /<  5. The finite-elements method consisted of 
using Galerkin weighted residuals, nine-node iso- 
parametric quadratic elements, and the trapezoidal 
(implicit) algorithm with adaptive time step [9]. The 
local instantaneous heat flux on the wall became inde- 
pendent of grid size when the number of elements 
reached 1090, which is the number we retained for all 
the numerical runs. The resulting system of linear 
algebraic equations was solved for each time step 
through the quasi-Newton (one step) algorithm. The 
adaptive time integration scheme had the following 
restrictions : (i) a smallest time step in the range 10 5_ 
10-4; (ii) a largest time step of 10-2; and (iii) a local 
maximum relative time truncation error, d", of 10 -3 
at each time step, dP + 1 = d~(lO-3/[[dnll)l/3, where d~  
and d? '+1 are the time increments at the steps n and 
n + 1, and I1" II is the Euclidian norm. 

Six or seven consecutive cycles were required until 
the thermal boundary layer solution reached the per- 
iodic state. The results presented in Figs. 2 and 3 refer 
to the last cycle in each sequence. The calculation of 
the F function required special care, because during 
each tl interval (when the heating is 'on')  the bound- 
ary temperature exhibited two types of behavior. At 
the start of the tl interval, the wall temperature was 
forced to a new and uniform value that differed mark- 

1 

0.5 / ~ ~ ' ~  

0,01 0.1 1 
71 

Fig. 3. Uniform flow : the maximization of the overall Nus- 
selt number by selecting the pulse interval (?0 when the pulse 

shape (i'l/?:) is fixed. 

edly from the ~-dependent distribution inherited from 
the end of the preceding ?: interval. This initial shock 
was followed by a smooth variation in time for the 
wall temperature and heat flux. The smooth behavior 
continued into the [2 interval, where the wall was 
adiabatic. To capture the true behavior of the wall 
heat flux during the entire cycle 7~ + 72, it was necessary 
to avoid any numerical 'smoothing' of the solution, 
from one cycle to the next. 

The calculation of F started with the integral of 
equation (12), 

= f l  ( -  00 t~) ,  = 0 d~, 

which was available in tabular form at each time step 
of the last cycle. We fitted ~b by least squares to an 
incomplete set of exponentials. After several trials and 
accuracy tests, we found that exp { 1, 7- 0.1, 7- 0 2, 7- 0.3 } 

offered an excellent set, such that the relative error 
between the tabulated and curve-fitted q~ values was 
less than 10-4. Using these curve fits, we evaluated the 
time integrals 

i I ~bd7 

analytically, and used them in the F definition (l 5). 
We repeated this work for several combinations of 

71 and 72, and obtained a two-dimensional table for 
F(tl, 72). These data were fitted by least squares to 
incomplete sets of exponentials using the same method 
as in the preceding paragraph. For example, in Fig. 2 
the curves drawn for F vs tl at constant 72 show that 
F increases as tz decreases, in accordance with the 
scaling trend anticipated based on equation (5). It is 
worth noting that as the thermal boundary condition 
becomes continuous in time (72 ~ 0), F approaches 
the exact solution for steady heat transfer from an 
isothermal wall bathed by uniform flow, F =  1.128 
(e.g. ref. [8], pp. 52 and 358). 

The data of Fig. 2 have been replotted in Fig. 3 as 
F vs tl when the ratio tl/72 is held fixed. This pres- 
entation allows us to identify the optimal duration of 
the heating pulse, or the optimal period of the cycle, 
when the 'shape' of the pulse is fixed. The optimal tl 
values and the corresponding F maxima are listed in 
Table 1. The optimal duration of the heating pulse 
increases as the ratio 71/72 increases. 

It is interesting to note that the results of Fig. 3 agree 
in an order of magnitude sense with the optimum 
anticipated in equation (8). Figure 3 also shows that 
the F maximum falls under the ceiling value, 
F = 1.128, associated with steady heat transfer from 
an isothermal wall. The F maximum is quite sharp, 
and stresses the importance of identifying accurately 
the optimal period of the pulsating heating process. 

4. NON-UNIFORM FLOW 

The next question is how the conclusions of Fig. 3 
change when the wall is swept by a common fluid such 
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Table 1. Numerical results for the optimal heating interval for maximum overall heat transfer (Sections 3 and 4.1) 

P r  = 0 . 7  P r  = 7 
P r  --* 0 R e  = 1 O0 R e  = 1 O0 

m _ _  m 

t'1/72 t],opt NumaxPe-  1/2 tl.op* gUmax tl ,opt Numax 

0.25 0.051 0.0761 
0.5 0.08 0.890 0.079 5.511 0.148 11.74 
0.75 0.103 0.960 
1 0.126 1.042 0.081 6.266 0.161 14.26 

oo (steady) - -  1.128 - -  7.63 - -  17.68 

as air or water (Pr ~ 0.5). In such a case the flow 
is not  uniform, and must be accounted for in the 
calculation of the time-dependent temperature and 
heat transfer. We pursued this question numerically 
by using two formulations:  (i) a full Navier-Stokes 
formulation of the two-dimensional geometry of Fig. 
l ,  and (ii) a boundary  layer approximated model 
based on Blasius' solution for the flow field. 

4. I. Navier-Stokes model 
The nondimensional  form of the fluid mechanics 

part of  the problem is 

Ou, Ov, 
Ox---: + ~ = 0 (16) 

Ou, Ou, Op, 1 /'O2u, OZu,'~ 
u, ~x, + v, Oy, := -- Ox--'-** + Ree ~x2, + ~3y2, ] (17) 

Ov, Or, 
U, ~x, +V, ay * . . . .  

where 

( x , ,  y , )  - 

Op, 1 ['O2v, O2v,\ 
t~y, + Ree C~x~ + ~y~ ) 

(x, y) (u, v) 
L (u , ,v , )  - U~ 

- P Re  = UooL 
P* pU 2 v 

The boundary  conditions for the flow are 

(18) 

(19) 

u ,  = 1 v ,  = 0 at  x ,  = 0 

u , = 0 v , = 0  at y , = 0  

0 
Ox,(U*'V*)=O at x , =  1 

u , =  l v , = 0  as y , ~ o o .  (20) 

The unsteady energy conservation equation that cor- 
responds to this formulation is 

0o __a° _a° _ ±( 2j + (21) 
+U, dx__ +V,¢y,  Pe kaxl  OylJ 

where O, ? and Pe are defined in equation (10). The 
thermal wall conditions are the same as in equations 
(11). 

The numerical method used to solve equations 
(16)-(21) was a]most the same as in the preceding 

section. It was found that the y ,  --, oo boundary,  equa- 
tion (20), can be replaced quite accurately with y ,  = 5, 
such that the effect on the overall steady heat transfer 
rate (?2 ~ 0) is less than 1%. Since the problem is one 
of forced convection, the flow part was solved first, 
and the transient heat transfer part second. Special 
attention was paid to the approach to the quasisteady 
(periodic) regime. Figure 4 shows one of the tests used 
for this purpose. Each curve represents the average 
heat flux released by the wall at the first time step of 
each heating cycle (period). Two curves are drawn, 
one for 0 = 1 as initial condit ion (hot isothermal 
flow), and the other for 0 = 0 (cold isothermal flow). 
The figure shows that the periodic regime is reached 
after approximately 10 cycles. 

The curve-fitting technique described in the pre- 
ceding section was used again. This time the function 
basis was extended to exp {1, ?-0.1, ?-0.2, ?-0.3, ?-04}. 
The F ,  factor was defined simply as F ,  = Nu, instead 
of F of equation (14). The overall heat transfer results 
obtained for Pr = 0.72 and 7 at Re = 100 are sum- 
marized in Table 1 and Figs. 5 and 6. These also 
show the results obtained based on the boundary  layer 
formulation, which is discussed later. 

Figures 5 and 6 reinforce the conclusion that the 
overall heat transfer can be maximized with respect to 
the durat ion of the heat pulse (?l) when the on/off 
ratio is fixed. As in the low Pr limit (Fig. 3), the 
optimal 'on '  interval is of  the order t l ,op t ~ 0.1. The 
maximum Nu value is consistently lower than the 

I S 0  , ' , ' 

P r  = 0 . 7 2  

N---u R e  = 1 0 0  

1 o o  

50 o=o 

o=1 

0 
3 S 7 9 11 

n u m b e r  o f  p e r i o d s  

Fig. 4. Test for the approach to the periodic regime when 
Pr = 0.72, Re = 100, ?l/?z = 1 and t't = 0.08. 
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8 

Nu 

6 

P r  = 0 .72  

R e  = I00 
N a v l e r  S t o k ~  ( s l e a d y  s t a t e )  

2 
o I N a v l e r  S t o k e s  

13 0 . 5  N a v l e r  S t o k e s  

- - o  - - I B o u n d a r y  L a y e r  

- - I S  - - 0 . 5  Boundary Layer 
0 , , , , , I 

~ . 0 4  0 . 1  0 . 5  

Fig. 5. Numerical results for averaged overall heat transfer 
when Pr = 0.72 and Re = 100. 

value reached when the heating process is steady (tz 
0), in agreement with the scaling prediction made in 
equation (5). 

4.2. Boundary  layer mode l  
In this second two-dimensional formulation, we 

assumed that u(x,  y)  and v(x ,  y)  are available from the 
classical Blasius solution (e.g. ref. [8], pp. 46-49). The 
nondimensional unsteady energy equation is 

- ~ + f ~ + . .  ( , . f ' - f ) ~ = ~  (22) 

where ~', 0, 4, and q are defined in equation (10),f(r/B) 
is Blasius' function, and 

2 5  - * , 

Pr  = 7 

R e  = 100 
2 0  

N---u N a v i e r  S t o k e s  (steady shire) 

• . . . . . . . . . . . . . . . . . . .  -o- t -  • • 4 

15 

G 
5 t3 1 N a v l e r  S t o k e s  

C~ 0 . $  N a v i e r  S t o k e s  

- - qS - - 1 Boundary Layen 
- - I N -  - 0 . 5  B o u n d a r y  Layer 

0 0 . 0 4  0 . 1  ~ . 6  

i, 
Fig. 6. Numerical results for averaged overall heat transfer 

when Pr = 7 and Re = 100. 

r/ u = Uo~f'(qs) 
t l s -  (~pr) , /2 ,  

= ~ ( r / . f ' - f ) .  (23) 

The boundary conditions are 

0 = 0  at •=0 

0 = 0 at ~ = 0  

~0 
- - = 0  at ~ = 1  

0 =  1 at  v / = 0  

~0 
- - =  0 at r / = 0  
Oq 

0 = 0  as q --+ oo 

during ~'~ 

during T2 

(numerically, t/--- 6). (24) 

The F factor that was monitored was defined in 
Section 3, namely F = N u  Pe-~/2. The flow part of the 
problem (the Blasius problem) was solved using a 
Runge-Kutta 4th/5th order adaptive scheme with 
error control (10 -6) per t/B step. This tight control 
produced a sufficiently dense discrete set of (qB,f,f') 
points that guaranteed a locally accurate interpolation 
scheme for determining the (t/B,f,f') values needed to 
substitute in equation (22). The energy equation was 
solved using a homemade code based on the ADI 
algorithm introduced by Douglass and Gunn, as pre- 
sented by Peyret and Taylor [10]. The grid was 
uniform. The second-order accuracy of the scheme 
was preserved by making suitable approximations in 
the geometrical splitting of equation (22). The scheme 
is unconditionally stable because the coefficients of 
the convective terms are independent of the unknown 
0. However, to avoid the 'pollution' caused by the 
boundary conditions and the anisotropy of the model, 
a suitable determined largest time step was used [10]. 
Space limitations force us to skip over several non- 
trivial aspects of the work done to ensure the accuracy 
of the results. 

Figures 5 and 6 show the results obtained with the 
boundary layer model, next to the results based on 
the full Navier-Stokes model. The main conclusion is 
that the boundary layer formulation does not capture 
the physics of the heat transfer phenomenon at short 
'on '  intervals, and the calculated N u  does not reveal a 
maximum vs t',. The reason is that at short times the 
temperature field has not had enough time to develop 
into a thermal (convective) boundary layer. This con- 
clusion is supported by a companion study of the 
maximization of natural convection heat transfer 
from a wall with pulsating heating [11]. It is an impor- 
tant conclusion, because it makes necessary the 
numerical modeling based on the full Navier-Stokes 
equations (Section 4.1). The boundary layer method 
is, as expected, more expedient and captures at least 
approximately the effect of changing the on/off time 
ratio i'1 / t'2. 
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5. EXPERIMENTS 

We conducted a series of forced convection exper- 
iments in air to demonstrate the existence of an opti- 
mal heat pulse interval for maximum overall thermal 
conductance between the heater surface and the air 
stream. The exper:iments were performed using a sin- 
gle cylinder in cro,;s-flow, with pulsed heat generation 
rate in the cylinder. This configuration was selected in 
order to test the s,zale analysis of Section 2, which is 
supposed to be valid for heaters of any shape 
immersed in a free stream. The ultimate objective of 
these experiments was to demonstrate that the opti- 
mization executed numerically for plate heaters (Sec- 
tion 4) can be performed experimentally for heaters 
of other shapes. 

5.1. Experimental apparatus 
Figure 7 shows the main components of the exper- 

imental facility. A heat generating cylinder was held 
horizontally in a wind tunnel connected to a suction 
fan. The internal dimensions of the wind tunnel are 
l 1 × 13 × 60 cm. The electric heater (CHROMALOX 
model 3618K532, maximum power 450 W at 120 V) 
was inserted with a tight fit inside a brass tube with an 
outer diameter of 1.27 cm. Three precision thermistors 
type YSI44004 were embedded in the outer surface of 
the brass tube. A layer of heat sink silicone was placed 
between thermistors and brass. High conductivity 
epoxy was used to attach the thermistors to the tube 
surface. Two thermistors were positioned at the 
extremities of the tube, and a third was installed in 
the middle. Convection is the dominant mechanism 
(or thermal resistance) because the brass cylinder has 
high thermal conductivity, and the device is bathed 
by a stream of air. 

The function of the thermistors was to measure the 
instantaneous temperature distribution on the cyl- 
inder surface, and to identify the hot spot temperature 
(Tmax) during the on and offcycle. A fourth thermistor 
monitored the free stream temperature during each 
run. The readings were taken with an ohmmeter cap- 
able of measuring resistances as small as 10-2f~. In 
this way we were able to evaluate through direct 
measurements of temperature, time and air velocity, 
the group 

Nu D q"D l e t  "],i2 
f =  pe~i 2 - (1 +t21t,)k(Tma,-T~) \ U ~ D ]  (25) 

where Pep = U~D/ct. In the NUD definition, q" is the 
uniform heat flux released by the cylinder surface dur- 
ing the t~ interval, and q"/(1 +t2/t 0 is the heat flux 
averaged over a complete cycle. The function f of 
equation (25) should not be confused with the Blasius 
function of equation (23). 

We designed and built the adjustable electronics 
needed to make our own square pulse heat generator. 
The intervals of the on and off cycle are controlled by 
a dual timer integrated circuit, which controls a relay 
that interrupts the heater power supply. The time ratio 

can be adjusted. In the experiments we used tUt2 = 1 
and 0.5. All the time settings were adjusted using a 
chronometer with a bias limit of +0.01 s. The power 
input to the electric heater was held constant during 
each 'on'  interval of each run. One power setting for 
the heater was used, 0.115 W. 

We found that we had to use a low Reynolds num- 
ber ReD = U~D/v to ensure that the measured time 
intervals remained at least one order of magnitude 
higher than the time bias limit. We did this by reg- 
ulating the fan speed through a variable resistor, and 
measuring the air velocity with an anemometer with 
a bias limit of + 3%. In this way we fixed the air speed 
at ReD = 4 in all the runs: we used only one power 
setting for the fan, which means that the free stream 
velocity was the same in all the runs, accounting of 
course for the uncertainty in the measurements, which 
we did. Since at low velocities the accuracy of the 
anemometer is not guaranteed by the manufacturer, 
we double checked the measured ReD = 4 value in a 
special run with steady-state heat flux (t2 = 0). The 
NUD value determined experimentally based on equa- 
tion (25) was Nut~ = 1.43, while the value rec- 
ommended for ReD = 4 and Pr = 0.72 by a cor- 
relation based on data from many independent 
sources [12] is NUD = 1.28. These findings are con- 
sistent with the known fact that the correlations of 
ref. [12] can predict Nuo values that are up to 20% 
smaller than those furnished by experiments [13]. 

5.2. Procedure 
The thermistor bias limits were determined by cali- 

bration for one thermistor at a time. The thermistor 
was immersed in a constant temperature bath, and a 
total of 64 temperature measurements were made at 
20, 30 . . . . .  80°C. The largest standard deviation of 
these measurements was 0.0006°C, therefore the bias 
limit was set at + 0.001°C for all the thermistors. This 
bias limit is in agreement with the +0.0003°C bias 
limit of the same thermistors in a natural convection 
experiment [14], and with the +0.0005°C bias limit 
listed in an instrumentation handbook [15]. As we 
mentioned already, we performed our own calibration 
to confirm this information. 

The precision and bias limits in the measurement of 
the group f =  NUD/Pe~ '2 and [~ were calculated using 
the propagation line of Kline and McClintock [16], 

ef PAr 
(26) 

f AT 

Bf ~[l+(tz/t,) 2] fB,'~ (Ou®~z~i/e i  +t2U /j (27) 

where A T =  Tmax--T~. We measured Tm,x and T~. 
The laboratory is a temperature controlled environ- 
ment without windows, therefore the variations in 
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Fig. 7. The main features of the experimental apparatus : wind tunnel (top) and instrumented cylinder 
(bottom). 

room pressure, temperature and humidity were neg- 
ligible. In the calculation of the precision limit for 
the measured group f, the contributions made by the 
precision limits of q, t2, D, q", U~ and the tabulated 
physical properties were found to be negligible relative 
to the precision limit of AT. The time contributions 
are negligible because once the electronic timer is 
adjusted, the time intervals are reproduced identically 
in all the runs. The same observation applies to the 
air velocity : once the fan speed is calibrated through 
an appropriate power setting, Uoo is reproduced ident- 
ically in subsequent runs. In the calculation of the bias 
limit for f, the time bias limit and the anemometer 

bias limit are the most important contributions, 
because the temperature bias limit provided by the 
thermistors is very small in comparison with the bias 
limit of the anemometer and the time bias limit of 
the chronometer used in the timer adjustment. The 
precision limit for the measured ?1 is negligible relative 
to the bias limit in the calculation of the uncertainty, 
because an electronic time control method was used. 
Worth noting is that in the case of a cylinder the 
dimensionless times are based on D, 

Uoo 
(7~, ?2) = --D-- (t,, t2). (29) 
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Table 2. Relative uncertainties in the experiments with a cylinder in cross-flow (ReD = 4, 
D = 1.27 cm) 

?, U,,/?, f Uflf 71 U?,/?I f Uf/f 

0.05 0.085 0.568 0.062 0.05 0.085 0.676 0.059 
0.08 0.058 0.572 0.040 0.08 0.058 0.693 0.039 
0.12 0.045 0.585 0.029 0.12 0.045 0.711 0.030 
0.16 0.039 0.571 0.024 0.16 0.039 0.733 0.031 
0.72 0.031 0.520 0.031 0.72 0.031 0.651 0.019 

The precision limiL for the temperature measurements 
was calculated as lwice the standard deviation of each 
set (10 values per point) of observations for AT. The 
uncertainty limits forfand 71 were calculated with the 
following formulas, and the results are summarized in 
Table 2, 

UI : : + - (30) 
f [1 i"1 " 

5.3. Results 
Figure 8 shows the measured effect of the pulse 

interval 71 on the overall thermal conductance between 
the cylinder and the air stream. Ten runs at the same 
power setting are responsible for each of the points 
plotted in the figure. The results show that there is an 
optimal T1 for maximum thermal conductance. Ex- 
pressed in dimensionless terms, the optimal time is of 
order of 0.1, as in Figs. 3 and 5 for the plate heater. 

We added to Fig. 8 the numerical results calculated 
in Section 4.1 for the plate heater. This superposition 
is appropriate in an order of magnitude sense, because 
in laminar forced convection on a fiat plate in air Nu 
scales as Pe 1/2 or Re 1/2. The agreement between the 
numerical and experimental results is remarkable for 

£ 

0.8 

0.6 m 

~ = 0.72 I / Num~e~, nat plate ~) 
• • EXlX:aJmcntal, cylinder(N%) 

RED=4 

if 

0 . 6  

0 , 4  i i , , , i i i i  i i i ) i , i ,  

0.01 0.i 

3, 
Fig. 8. Experimental results for the optimization of a cyl- 
indrical heater in cross-flow, and comparison with the 

numerical[ results for the plate heater. 

two very important reasons: (I) the experiments 
involved a cylinder in cross-flow while the numerical 
simulations referred to a flat plate; and (2) the cyl- 
inder was a heater with uniform flux, while the flat 
plate had uniform temperature. In summary, Fig. 8 
provides support for the scale analysis that preceded 
the numerical and experimental work. 

6. CONCLUSION 

We have presented a theoretical, numerical and 
experimental study in which we considered the opti- 
mization of the heat transfer performance of pulsating 
heaters in forced convection. The empirical results 
validate the scale analysis, which predicted a certain 
heat pulse interval such that the heater-fluid thermal 
conductance is maximum. 

We showed that in simple geometries, such as the 
flat plate parallel to a free stream (fluid, or saturated 
porous medium), the optimal regime of pulsating heat 
transfer can be determined accurately by relying on a 
complete numerical simulation of the flow and time- 
dependent temperature field (Section 4.1). We also 
found that boundary layer simplifications fail to cap- 
ture the short-times (high frequency) range of the 
phenomenon. 

In most other cases, the optimal pulsating heating 
regime can be determined experimentally. We illus- 
trated the procedure by using a single cylindrical 
heater in cross-flow. It is important that when the 
results are nondimensionalized based on the proper 
scales of the time-dependent phenomenon, the opti- 
mization of the cylinder fits on the same non- 
dimensional plot as that of the fiat plate. 

These conclusions stress the generality of the pul- 
sating heating optimization process. They also stress 
the applicability of the present methods to the opti- 
mization of heaters with other shapes and surface 
thermal conditions. The optimization of pulsating 
heaters in natural convection is described in ref. [11]. 
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